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Abstract—The rapid growth of the Semantic Web in the last
years has led to the emergence of Ontology-Based Question
Answering systems, namely systems that exploit the ontological
structure of data in order to interpret and answer natural
language questions. In this paper, we are interested in ques-
tion answering scenarios where both semantic data and user
questions can be characterized by vagueness and we propose
a novel framework that is able to handle this vagueness by
means of fuzzy ontologies.

I. INTRODUCTION

Question Answering systems (QA) have been investigated
for a long time by the communities of Information Retrieval,
Artificial Intelligence and Databases, as a way to enable
users to ask questions in Natural Language (NL), using
their own terminology, and receive concise answers [1].
As sources for these answers have been mainly considered
document collections [2], databases [3] and the Web [4].

Nevertheless, with the recent rapid growth of the Semantic
Web and the availability of large-scale ontologies and linked
data [5], there has been a growing interest in developing
QA systems that can answer questions over such data. One
reason for that is that user-friendly interfaces, which can
support end users in querying and exploring this new type
of information space are crucial for the realization of the
Semantic Web vision [6]. Another reason is that the exploita-
tion of the expressive power and reasoning capabilities of
semantic data can lead to much more effective interpretation
(and thus answering) of user questions.

In an ontology-based QA scenario, data is typically stored
as a graph in an ontology with each node connected to others
by various relations. This is a highly structured format where
the semantic details are explicitly defined within the context
of the ontology and typically also with references to external
ontologies. Natural language queries however are structured
only insofar as one word comes before another, and the
semantic content is often unclear. Thus, the challenge is
the accurate and efficient interpretation of these queries
as they pertain to the knowledge contained in the relevant
ontologies.

Towards tackling this challenge, several question answer-
ing systems for semantic data have been proposed in the

past, including Aqualog [7], Power- Aqua [8], NLP-Reduce
[6], Pythia [9], and FREyA [10]. Nevertheless, none of
these systems is currently designed to answer questions that
contain vague terms.

More specifically, vagueness, typically manifested by
terms and concepts like Expensive, Strong, Near, Modern
etc., is a quite common phenomenon in human knowledge
and communication and it is related to our inability to pre-
cisely determine the extensions of such concepts in certain
domains and contexts. That is because vague concepts have
typically fuzzy boundaries that do not allow for a sharp
distinction between the entities that fall within the extension
of these concepts and those which do not [11] [12]. This
is not usually a problem in individual human reasoning,
but it may become one, when multiple agents (human or
machines) need to agree on the exact meaning of such terms
and reason with them.

In the context of an ontology-based question answering
scenario, vagueness may appear both in user queries and the
ontology. For example, a user may ask “Which European
countries have long rivers?” with the ontology containing
the exact length of each river. Conversely, a user may
ask “Which restaurants cost not more than 20 euros per
person?” with the restaurant price attribute in the ontology
taking as values one of the vague terms “cheap”, “moder-
ate”, “expensive”. And, of course, the user may ask “Which
restaurants are relatively cheap?” with the price attribute in
the ontology taking again only as values one of the above
terms.

The challenge in all these cases for a QA system is
to express the question’s content in a compatible to the
ontology way so that it can answer it. This means that
the term “long” in the above example should be somehow
expressed with the help of actual length values if it is to
be matched with the ontology’s values. Similarly, the “20
euros” price constraint in the restaurant request, or even that
of “relatively cheap” needs to be expressed by means of the
ontology’s available three price characterization vague terms.

In this context, we propose in this paper a novel ontology-
based question answering architecture that is able to tackle
scenarios like the above and enable effective question an-



swering in vague domains. The way it does that is by
using Fuzzy Ontologies to formally represent and interpret
the domain’s vagueness and by implementing a modular
pipeline that takes as input (vague) queries expressed in
natural language and returns answers drawn from the fuzzy
ontology. A key feature of the system, as we will explain
subsequent sections, is that the answers it provides are
accompanied by the degree to which they satisfy the user’s
vague query.

The structure of the rest of the paper is as follows. In the
next section we define the problem we wish to tackle more
rigorously and we provide an overview of our approach. In
section III we describe the way domain knowledge is needs
to be organized/enriched in order to facilitate vague question
answering while in IV we describe the components of a
software pipeline that performs such answering. Finally, in
section V we discuss summarize our approach and discuss
future directions.

II. PROBLEM DEFINITION AND APPROACH

In traditional ontology-based QA systems, the main task
to be tackled is the transformation of the natural language
query into a set of required RDF1 triples, typically expressed
in the SPARQL2 query language and in accordance to the
system’s ontology. Achieving such a transformation, the
answering of the query is simply performed by executing
it against the ontology and showing the results to the user.
Thus, for example, the question “Give me the birthdays
of all actors of the television show Charmed” against the
DBPedia3 ontology would be transformed into the SPARQL
query:

PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX res:<http://dbpedia.org/resource/>
SELECT DISTINCT ?date WHERE
{

res:Charmed dbo:starring ?actor .
?actor dbo:birthDate ?date .

}

Nevertheless, this process is insufficient in the following
cases:

1) When the query refers in a vague way to an ontology
element that is not vaguely represented in the ontology.
For example, assume that the user asks for “movies
where young actors star” but the knowledge base
merely contains the exact ages of the actors. In such a
case the transformed SPARQL query will not be able
to retrieve any results, as it won’t be able to match
the vague query term with the non-vague ontology
content.

2) When the query refers in a non-vague way to an
ontology element that is vaguely represented. For

1http://www.w3.org/RDF/
2http://www.w3.org/TR/sparql11-query/
3http://dbpedia.org

example, assume that the user asks for “restaurants
with an average price of 20 euros” but the knowledge
base merely contains 3 possible values for the price
attribute, namely “cheap”, “moderate” and “expen-
sive”. Again, the SPARQL query won’t be able to
match the non-vague query value with the ontology’s
vague one.

3) The query refers in a vague way to a vague ontology
element. In this case, the SPARQL will match exact
correspondences of vague values (e.g. “cheap” with
“cheap”) but won’t do the same for non-exact but
close correspondences (e.g. “cheap” with “relatively
cheap”).

Thus, the problem we wish to tackle can be defined
as follows: “Given an ontology-based question answering
scenario where both ontology elements and user queries
may be expressed with vague terms, how can we effectively
interpret the users’ queries and provide them with accurate
answers?”

Our approach towards tackling this question has two
dimensions. The first is the adoption of the fuzzy ontology
paradigm as a way to formally represent the meaning of
the domain’s vague terms and concepts within the system’s
ontology. As we discussed in D4.3, fuzzy Ontologies [13]
are extensions of classical ontologies that, based on prin-
ciples of Fuzzy Set Theory [14], allow the assignment of
truth degrees to vague ontological elements, in an effort
to quantify their vagueness. Thus, whereas in a traditional
ontology one would claim that ‘‘A restaurant price of 100
Euros is expensive”, in a fuzzy ontology one would claim
that “A restaurant price of 100 Euros is expensive to a
degree of 0.7”. In fact, as we will explain in the next section,
a fuzzy ontology can define a more complete mapping
between the space of potential restaurant price values and the
degrees to which these are considered “expensive”, “cheap”,
etc., as shown in figure 1.

Figure 1. Fuzzy Datatype Example

The availability of such mappings (and other fuzzy def-
initions) for the domain’s vague terms practically enables
a system to deal with the three vagueness-related question
answering cases described above. How this may be exactly
achieved is the second dimension of our approach, namely
a Vague Question Answering Pipeline that defines a set
of components for interpreting and answering vagueness-



related natural language queries, based on domain fuzzy
ontologies. In what follows we provide an overview of each
component of the pipeline and explain how it exactly works.

III. KNOWLEDGE BASE ORGANIZATION

When considering the problem of vague question answer-
ing, we assume the existence of an ontological knowledge
base describing one or more domains. This ontology consists
of concepts, relations, attributes, datatypes and instances, a
subset of which may be vague. Along with the above knowl-
edge base, we also assume a fuzzy ontology that describes
the vague aspects of the ontology. From a conceptual point
of view, such an ontology consists of:

• Fuzzy Concepts, namely vague concepts whose in-
stances may belong to them to certain degrees (e.g.
Goal X is an instance of StrategicGoal to a degree of
0.8).

• Fuzzy Relations/Attributes, namely vague relations
and attributes that may link concept instances to other
instances or literal values to certain degrees (e.g. John
is expert at Knowledge Management to a degree of 0.5).

• Fuzzy Concept Membership Axioms, namely axioms
that relate an instance to the concept(s) it belongs to a
certain degree.

• Fuzzy Property Value Axioms, namely axioms that
relate two instances to a certain degree.

• Fuzzy Datatypes, namely sets of vague terms which
may be used within the ontology as attribute values
(e.g. attribute experience mentioned above). In a fuzzy
datatype each term is mapped to a fuzzy set that assigns
to each of the datatype’s potential exact values a fuzzy
degree indicating the extent to which the exact value
and the vague term express the same thing (e.g. A
consultant with 5 years of experiences is considered
experienced to a degree of 0.6)

The construction of the fuzzy ontology and the definition
of its degrees has already been discussed in D4.3. Additional
tasks we perform here for enabling vague QA are the
following:

• We define fuzzy datatypes even for attributes that
actually take non-vague values in the ontology as long
as these may be expressed by means of vague terms.
The reason for that is that these terms may still be used
within user questions, so the system needs to be aware
of their correspondence to actual values.

• For attributes that take non-vague values but are asso-
ciated to a fuzzy datatype, we express their relevant
value axioms by using the datatype’s terms and fuzzy
degrees. This means, for example, that the axiom
“Restaurant A’s average price is 20 Euros” becomes
“Restaurant A’s average price is cheap to a degree
d1” and “Restaurant A’s average price is moderate
to a degree d2”, d1, d2 being derived from the fuzzy
membership function of the fuzzy datatype of figure 1.

• For attributes that take vague values and are associated
to a fuzzy datatype, we expand their relevant value
axioms so as to include the other terms of the datatype.
This means, for example, that the axiom “Restaurant
A is cheap” is expanded with the axioms “Restaurant
A is moderate to a degree of d1” and “Restaurant A is
expensive to a degree of d2”. The degrees d1 and d2”
are derived from computing the fuzzy subsumption [15]
between the respective fuzzy sets of the terms.

It should be noted that all the above generated fuzzy
axioms do not replace the original ones in our main knowl-
edge base; they are merely used by the fuzzy query engine
to enable the system to answer queries that refers in a
vague way to ontology attribute values that are not vaguely
expressed in the original ontology.

IV. VAGUE QUESTION ANSWERING PIPELINE

The QA system operates as a pipeline, incrementally
analyzing and augmenting the interpretation of the natural
language input, based on an ontological knowledge base.
There are two main stages, as shown in Figure 2; the first
involves a linguistic and semantic analysis of the question
to determine what information is being requested and with
what restrictions while the second converts the interpretation
into a formal query that can retrieve the answer from the
knowledge base.

A. Question Linguistic and Semantic Analysis

This stage involves the transformation of an natural lan-
guage question into a set of ontological statements that
express the required information. This process typically
starts with the tokenization and parsing of the question’s
text. Tokenisation is the segmentation of text into parts
that represent distinct units to be further interpreted while
grammatical parsing allows for more in-depth analysis of the
structure of the query by identifying the phrasal structure of
the sentence (i.e. verb-phrases, nouns, conjunctions etc) and
the semantic dependencies between lexical entities. Syntactic
parses are helpful for identifying the tokens that are likely
to have mappings to the ontology while dependency parses
provide a direct understanding of the subject/object relations
of a sentence, giving a preliminary glance at the high-level
structure of the query itself.

The process continues with entity mapping, namely the
tagging of the question’s tokens with the ontological entities
they refer to. Typically, this is done by lexically matching the
labels of ontological concepts to the query tokens, followed
by the application of some entity disambiguation algorithm
[] to resolve ambiguous entities (e.g., in the question “How
many goals has Pedro scored for Barcelona”, the entity
“Pedro” is ambiguous as there are many soccer players with
that name).

Once entities are identified and disambiguated it is nec-
essary to determine how they are related in the target



Figure 2. Vague Question Answering Pipeline

knowledge-base. Oftentimes there will not be a direct re-
lationship between two concepts identified in a natural
language query, but instead have intermediary concepts (e.g.,
bands and songs may be related via albums). Thus, ontology
routing determines the possible relation paths that link the
identified entities of the question within the knowledge base.
In small ontologies such cases may be limited but in larger
ones there may be several possible “routes” between two
entities, and which one to use must be determined. Normally,
the “shortest route” is assumed to be optimal, but care must
be made when other tokens in the query reflect entities
and/or relations found only along longer routes.

B. Query Fuzzification and Execution
The fuzzification stage is the conversion of the derived

triples to a formal fuzzy query language. For the purposes
of this study, we consider the f-SPARQL query language
[16] which allows to query ontologies that are formalized in
the f-DL-Lite language [17]. The latter is a fuzzy extension
of DL-Lite [ref] that allows the definition of fuzzy assertions
of the forms B(a) ≥ n, R(a, b) ≥ n, where B is a
class, R is a property (relation or attribute), a and b are
individuals and n is a real number in the range [0, 1]. These
assertions can also be expressed in RDF/XML syntax, using
the serialization proposed in [26]. For example, stating that
“Elvis is a FamousPerson to degree at-least 0.9” is specified
as follows.

<FamousPerson rdf:about="Elvis"
owlx:ineqType=">=" owlx:degree="0.7"/>

f-SPARQL supports two types of queries:
1) Threshold queries: Ask for entities that satisfy fuzzy

axioms to certain degrees.
2) General Fuzzy Queries: Ask for the degrees to which

given axioms are true.
Given that, the conversion of the query triples to the

above query language is done as follows. If the user’s query
involves a fuzzy concept or fuzzy relation (e.g. “Give me
all our competitors”), then we form the query as a General
Fuzzy Query:

#GFCQ:SEM=FUZZYTHRESHOLD# SELECT ?x WHERE
{ ?x rdf:type Competitor. #DG# 1.0 }

The execution of this query against the fuzzy ontology
will return all the competitors with their actual degrees.
These degrees make the answer more complete as they
reflect the extent to which each result entity is actually
considered a competitor in the knowledge base.

On the other hand, if the user’s query involves an attribute
associated to a fuzzy datatype (e.g., the price of a restaurant)
then there are three possibilities:

1) The attribute’s value in the knowledge base is crisp
but vague in the user’s query.

2) The attribute’s value is vague in both the knowledge



base and the user’s query.
3) The attribute’s value in the knowledge base is vague

but crisp in the user’s query.
In the first case, we form again a General Fuzzy Query

like the following:

#GFCQ:SEM=FUZZYTHRESHOLD#
SELECT ?x
WHERE {?x price Expensive . #DG# 1.0}

This query is executed on the a priori fuzzified facts and
retrieves the relevant entities along with their degrees. In
the second case, we form the same f-SPARQL query as in
the first case, but this time this will be executed on the
expanded fuzzified vague terms. This ensures that different
vague terms will match (even if only to a certain degree)
as long as they have some overlap in their meanings, thus
increasing the recall of the system.

Finally, in the third case, we use the fuzzy datatype to
express the query’s crisp value by means of its corresponding
vague terms. Thus, for example, the query “Give me all our
restaurants with a price of 20 euros” will be transformed
into a threshold query as follows:

#GFCQ:SEM=FUZZYTHRESHOLD# SELECT ?x WHERE
?x price cheap . #DG# 0.6
?x price moderate . #DG# 0.4

}

Executing this query will retrieve all restaurants that are
average to a degree of 0.4 or cheap to a degree of 0.6. Thus
here not only the matching between the crisp value and the
vague term is facilitated, but also the returned results are
accompanied by a degree that tells the user how much they
fit his/her question.

V. CONCLUSIONS & FUTURE WORK

In this paper, we proposed a novel framework for perform-
ing ontology-based question answering in scenarios where
both domain knowledge and user questions are characterized
by vagueness. The framework manages to tackle the three
vagueness-related problematic cases that we identified in
section II by utilizing fuzzy ontologies as complementary
domain knowledge, along with state-of-the-art fuzzy on-
tology querying and reasoning technologies. It should be
noticed that the quality of the answers provided by the
system is directly proportionate to the accuracy of the
degrees in the fuzzy knowledge base; nevertheless this is
a matter of effective fuzzy ontology engineering and falls
outside the scope of this paper.

An aspect of our approach to be addressed in the future
is the assessment of the QA pipeline’s efficiency, i.e., the
execution of the system against fuzzy knowledge bases of
increasing size and complexity and the measurement of the
average time it takes to interpret and answer a question.
Moreover, we intend to integrate our QA architecture with
a fuzzy knowledge acquisition framework that we have

developed in the past [18] and evaluate the overall system’s
effectiveness.
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